

EECS 360
Spring 2021
Analog Filtering

1. Let $H(f) = \text{tri}(f/1000)$

- a) Find the first zero bandwidth.
- b) Find the 3dB bandwidth.
- c) Find the equivalent rectangular bandwidth

2.

- a) $x(t) = 10000 \text{sinc}^2(10000t)$, $x(t)$ is input to an ideal lowpass filter with a bandwidth of B kHz
find the smallest B such that the filter introduces no distortion.
- b) Find the % energy in the frequency range $|f| \leq 5000$?
- c) What are the barriers to building the filter described in part a)

3. Let $x(t) = \sum_{k=-\infty}^{\infty} \text{rect}(\frac{t-T_0k}{w})$ where $w=1\mu\text{s}$ and $T_0=2\mu\text{s}$

Design (specify) a system (filter) to convert $x(t)$ to $y(t) = \cos(2\pi f_a t)$ where $f_a=1.5$ MHz.

4. A series R, L, C circuit is modeled by the following differential equation with $x(t)$ =input voltage and $y(t)$ =output voltage=voltage across the capacitor.

$$LC \frac{d^2y(t)}{dt^2} + RC \frac{dy(t)}{dt} + y(t) = x(t)$$

- a) Find $H(f)$.
- b) Plot $20\log_{10}(|H(f)|)$ with $R=100$ Ohm, $L=0.001$ Henry, $C=0.000001$ Farad. (You are encouraged to use Matlab to do this plot.)
- c) For $R=100$ Ohm, $L=0.001$ Henry, $C=0.000001$ Farad, given $x(t)=\cos(2\pi 1760t)$ find A in $y(t)=A\cos(2\pi 1760t+\phi)$
- d) Is 1760 Hz close to the 3 dB bandwidth for this system?
Confirm your results with:

http://www.ittc.ku.edu/~frost/EECS_360/Mathematica-360/Series-RLC-Transfer-Functions.cdf